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ABSTRACT

This note extends briefly the integer transforms of C.M. Rader (1972)
to transforms over finite fields and rings. These transforms have
direct application to digital filters and make possible digital filtering
without round-off error. In some cases, the parameters of such
number-theoretic transforms can be chosen so that substantial re-
ductions in hardware are possible over what would be needed using

classical digital filtering techniques.
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SUMMARY

This note reports briefly on material found for utilizing finitc fields and rings
to compute convolutions of finite sequences of integers. The methods described
generalize the integer transform methods of Rader1 to similar transforms over
finite fields and rings.

Some fundamentals of finite or Galois fields GF(pn) are informally introduced.
Then, following Pollard,2 d-point Fourier-~like transforms are defined and shown
to be the only linear transforms in GF(pn) with the circular convolution property.
This generalizes to Galois fields a result duc to Agarwal and Burrus3 for the

convolution of integer sequences.

Since the set G(p) of integers modulo a prime number p is always a subfield of
GF(pn), d-point transforms over GF(pn) can be utilized to compute the transform
of a sequence of integers {ai, CPTRRE ad} where a, lies in the range —[(p — 1)/2] <
an\< (p—1)/2. As a consequence, the circular convolution of two such sequences
can be computed using d-point transforms over GF(pn).

An interesting special case occurs if n=2 and q is a Mersenne prime of form
q = 2P — 1, where p is a prime. For this case, GF(qZ) is shown to mimic the
complex numbers. That is, all elements of GF(qZ) are of the form a + ib wherc

a, beGF(q), and 1 satisfy the equations x2 +1=0.

The d-point transforms of GF(qZ) are shown to be candidates for computing con-
volutions of two sequences of complex integers. Since d, the number of points in
the transform, must divide the order q2 —1 = 2P*1(2P=1 _ 1) of the multiplicity
subgroup of GF(pZ), the number of points in a transform over GF(qZ) can be
chosen to be a power of 2, Thus one can utilize the fast Fourier transform (FI'T)

algorithm to compute convolutions of complex numbers without round-off crror.

In the last section of this note, a theorem, stated by Pollard2 on transforms
over a ring of integers modulo m, is examined. This leads to the notion of the
modular arithmetic transform. The Chinese remainder theorem is used to map

modular arithmetic transforms into the transforms of integers modulo m.
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THIZ USE OF FINITE FIELDS AND RINGS TO COMPUTE CONVOLUTIONS

L INTRODUCTION

Rceently C. M. Rader showed in Ref. 1 that the convolution of two finite sequcnces of integers
(ak) and (bk) for k=1,2,...,d can be obtained as the inversc transform of the product of two
transforms which were other than the usual discrete Fourier transform (DFT). Radcr defined

transforms of the form

d-1
nk
A = ), a2 Modb (1)

n=0

whcre b was either a Mersenne number

b=2p—1 : pa prime A
or b was the Fermat number

m

b= 1 * 22 " m an integer

The primary advantage of the above Rader transform over the discrete Fourier transform,

F.= 3 anwnk , (2)

n=0

where w is a dth root of unity, lies in the fact that the multiplications by powers of w are
replaced in binary arithmetic by simple shifts. Of course, this advantage must be weighed
against the difficulties of computing the answer modulo b and of the numeric constraints, rclat-
ing word lcngth, length of sequence d and compositeness of d, imposed by the above two choiccs
for b, suggested by Rader. Our purpose here is to review the Rader transform first by enlarg-
ing the class of transforms, given by (1), and second by presenting more details of the computa-
tional algorithm for computing such a convolution with (1).

In the next section, the class of transforms given by (1) is increased to include a Fourier-
type transform over an arbitrary finite field, the Galois field. Such a generalization has becen
discussed recently by J. M. Pollard2 in 1971, but also much earlier by Reed and Solomon3 in
1959 in a somewhat different context. The approach used here will follow the more explicit

approach of the earlier reference.

II. DFT ON A GALOIS FIELD

The only finite fields are the Galois fields. The number of elements in a Galois ficld is pn
where p is a prime number and n is a positive integer. To construct a Galois field GF(pn),
one must first find an nth degree polynomial p(x) over GF(p) which is irreducible. The elements

of GF(pn) are then all polynomials of the form
n-1

flg) = ) f.lal , f,€GF(p) , (i=0,4,2,...n-1)
i=0



where o is a root of p(x), i.e., p(a) = 0. The product h(a) of two elements say f(o) and
gle) in GF(pn) is the residue of f(x) g(x) modulo p(x) with e« substituted for x. That is,
h(e) is found by

h(x) = f(x) g(x) Mod p(x)
where x = @, Similarly, the sum s(«) is found by

s(x) = f(x) + g(x) Mod p(x)

wherc x = @. By taking the sums and products of all polynomials f(«) in this manner, the addi-
tion and multiplieation tables of the elements of GF(pn) can be found. Let this be illustrated by

the following cxample.

Example 1

Consider the integers modulo 3. This is the prime field or GI'(3) = R, 2} where 2 = —1.
Let

p(x)=x2+x+2

Since p(0) = 2, p(1) = 1, and p(2) = 2, p(x) is irreduciblc over the coefficient field GF(3). A root
to p(x) = 0 can only be found in some field containing GF(3), some extension field. If a is such

a root, then «a satisfics

p(a)=a2+a+2=0
Starting with the element «, one computes ozz by computing x2 Mod p(x) as follows:

1
x2+x+2|x2

x2+x+2
—-x -2

This —x — 2 = 2x + 1 is the residuc of x2 +x + 2, and

a2=2a+1

is the reduced expression for ozz. Similarly, one can compute 013 by computing the residue of
2 2 4
ER ) S R2x Hare 2% HiX, ikes,

2
x2+x+2|2x2+x

2x2+2x+1
25t 2

Thus

013=201+2

Continuing in this manncr one gets the results shown in Table 1.

TABLE 1
THE NON-ZERO ELEMENTS OF GF(32)

2 3 4 5 6 7 8
o o o a o' o « «

o 2a +1 2a + 2 2 2a a + 2 a +1 1




In this particular ease, ¢ and its powers ai (fori=1,2,...,8) generate the eight non-zero
elements of Gl«‘(32). If an element o and its powers generate the n.on-zero elements of a field,
o is ealled a primitive element. If « is a primitive element, and a root of p(x), whieh it is in
this example, then the relation p(«) = 0 ean be used to compute the non-zero elements of GF(pn).
This is done for this example as follows: p(a) = 0 is the relation az + o +2=0. Solving for

az, yields

o =2a +1
Then

a(az) = ol2a +1) = 20/2 + «

R
1

22a +1) +a=2a+2

and so forth, thereby obtaining Table 1.
The above example illustrates the following faets about a Galois field. All the elements of

GF(pn) satisfy the equation

X =% . (3)

There exists a primitive element asGF(pn) whieh generates the non-zero elements of GF(pn).
The non-zero elements GF(pn) eompose a eyelie group.
In general, there always exists an aeGF(pn) sueh that GF(pn) is the set {o, «, az, e

pn—Z a/pn"l n
@ ! }. « is ealled (p — 1)-th root of unity.

If in (1), b is a prime p, then the Rader ‘cr‘ansform1 ean be regarded as a mapping of a

subset of GF(p) into GF(p). To sce this, consider the mapping
d-1
A = Y ax Modp . (4)
k=0
Then the elements of the subset

2

Bl 2 70 ed

of GF(p) have, sucecessively, the images

{a(1), A2), A(2D), ... A% YY) Moap

also a subset of GI'(p) where akeGF(p). Hence, A(x) as given by (4) is a mapping of a subset of
GF(p) into GF(p). A(x) is called a polynomial mapping.
More generally, let a, and x be elements of an arbitrary Galois field, say GF(pn), and eon-

sider the mapping of subset of d distinet non-zero elements
o,={r, T Yor eGF(pn)
d 0’ '1°°°" "da-1" 'k

into GF(pn) with the polynomial mapping
d-1
k .
A(x) = E a, x . (5)
k=0



This is the most gcneral possible mapping of GF(pn) into GF(pn) (sce Ref. 3). This mapping

can bc displayed as a system of linear equations in the coefficients a,as follows.

) 2 d-1
A(‘ri)—ao+a1-r1+a2‘r1 +...ad_1'r1
B 2 d-1
A(TZ) =a, +a11-r2 +a12-r2 + cee84.472
2 d-1
= 3 6
A(-rd) agtaTyta Ty teeay Ty (6)

This system can be written further in matrix form as
A = \Tia (7)

where a and A arc the column matrices

a Alry)
ai A(Tz)
as= and A=
[*d-1 maitdl
and
'1 L2 d-1]
Ty Tysee=Ty
1 2 d-1
TosTosessTy
T=
1 1_2 d-1
L T e

is a d x d matrix of elements in GF(p").

By (7) the polynomial mapping (5) can also bc regarded as a lincar mapping of thc vector a
onto vector a vector A. Such a mapping is one to one or is invertible if matrix T has an inverse,
that is, if the determinant |T| of T is non-zero. Sincc the detcrminant of T is a Vandermonde
determinant, it can be cvaluated as

Tl = T[] (Ti—Tj) #0
j<i
since the -rj's are all distinct. Thus T_1 exists and (7) can be solved as

st

the inverse "transform.”



Next let us impose on (7) the constraint that it can be used to eompute eireular convolution

s _ of sequences a_and b_,
n n n

d-1
\‘\
3, akb(n-k) (9)

where (n — k) is the residue of (n - k) modulo d. One wants the transform of Sn’ namely, S to

be given by
™ 7 r % 7
S(Ti) A(Ti) B(Ti)
S(TZ) A(T,) B(r,)
B = = -AQ®B
LS(Td)_ _A(Td) 2 B(Td)_
Equating components
S(Tk) = A(‘rk) B(Tk) fork=1,2,...d
or
d-1 d-1 d-1
n _ {+m
L SpTg T S‘ Z % m Tk
n=0 =0 m=0
Substituting (9) in the left side,
d-1 d-1 d-1 d-1
n . {+m
Z Z p(np Tk T 4 z aEmek
n=0 p=0 £=0 m=0

Next if one substitutes ¢ for p and m for residue of (n-p) Mod d in the left side, then

d-1 d-1 d-1 d-1

) (m+l £ +m
E Z afb Z Z a b =Tl
=0 m=0 £=0 m=0

Finally, equating coefficients of a, bm’ one gets

Tlim”) S Tlf+m (10)

for (k, £, m=0,1,2...d — 1) where (m + ¢) is the residue of (m + ¢) modulo d.
In order to satisfy (10), suppose m + { is an integer r in the intervald £ r < 2d, then
m+f =r=d+(r)
where (r) is the residue. In this notation (10) becomes

lir)leiH(r):TlS. lir) . (11)



r).-1 (r)

Sincc by assumption T # 0, the inversc element [-ré ] in GF(pn) of Ty exists. Multiplying

both sides of (11) by this invcrse yiclds

rde1 fork=1,2,...d . (12)
That is, for transform (7) to yield circular convolutions, Ty must be a dt!' root of unity for
lai=1d) 2, sheidlin GF(pn). This is essentially the same result Agarwal and Burrus got in Ref. 4
for the circular convolution of integer scquences.

Since the non-zero elements of GF(pn) form a cyclic group of order pn — 4, the truth of (12)
for an element 'rkeGF(pn) implies integer d divides pn~ 1. That is, d| pn— 1 if transform (7) is
to yield a circular convolution. Moreover, sincc the set of elemcnts (7, Toeoo 'rd) are distinct and

are all dth roots of unity, this sct must bec a cyclic subgroup of the cyclic subgroup of the non-

zero elcments of GF(pn). Thus the set, (Ti’ Torooe -rd), equals the subgroup («, 012, S ad'i, 1)=
Py i.e.,
2 d-1
{'ri,'rz...'rd}={oz,oz,...oz ,1}=(pd (13)
in some order where aeGF(pn) is a generator of the subgroup.
If the group B = (o, 012, 240 G ad_i, 1) is substituted for (Ti, LPTR -rd) in transform (7), the
transform becomes
d-1
A = ) ae for (k=0,1,2,...,d -1) . (14)
n=0
To invert (14), observe first that all elements of @4 satisfy the equation
xd -1=0
But since xd — 1 factors as
d-1
ot x-n Y X0,
n=0
one has
d-1
k n
E x°=0 forx=#1 and xep, C GF(p")
k=0
d-1
Y k8= 14140041 =@ forx=1 (15)
P N ol
k=0 d times

where (d) denotes the residue of d modulo p. This formula is given by Pollard [Rcf. 2, Iq.(8)]
and earlier by Recd and Solomon [Ref. 3, Eq. (3)].
From (15) we now derive the discrete "delta" function needed to invert (14). Consider the

sum of X' over all the elements of the multiplicative subgroup @y defincd by (13). This is

d-1 d-1
Y o= T a9 Y gk
X€Q g k=0 k=0



But this is in the form of (15) and ﬁn is an element of ¢y thus

d-1
E x" = E (ﬁn)k=0 for n ¥ 0 Mod d
xupd k=0
= (d) for n = 0 Mod d
= (d) 6 4(n) 5

where éd(n) is the delta funetion

64(n) =0 for n ¥ 0 Mod d

=1 for n = 0 Mod d

Since (d) is an element of field GF(pn), thc inverse (d)_1 exists in GF(pn). Now, multiply

Ak by (d)_1 a_km and sum on k for (k=0,1,2,...d —1). This yields by (14) and (16),
d-1 d-1 d-1
-1 ¢ -km _ -1 ¢ 1 kn -km
(d) }_J Aka = (d) a o«
k=0 k=0 n=0
d-1 d-1 d-1
_ -1 Y kin-m)\ _ -1 _
= [} al ), @ =@ (@ ) asbyn-m
n=0 k=0 n=0
=a
m
Thus,
d-1
kn
Ak = z a a
n=0
and
d-1
-1 -kn
a_ = (d) ), A (17)
k=0

where a, and Ak are elements of GF(pn) and o is a generator of d element subgroup éd, the
multiplieative subgroup of GF(pn).

To show the eircular convolution property of (17), let

d-1 d-1
_ kn _ km
A= ) ae , By= ), ba
n=0 m=0
and
Ck = Ak Bk



Then by (17) the inverse transform of Ck for (k=0,1,...,d—1) is

d-1 d-1 d-1 d-1
= v =k - " 5 a .
@' Y ca™®=@ty ¥ ) ab o mnp
k=0 k=0 n=0 m=0
d-1 d-1 d-1
Tl A \' o GK(min-p)
=7 ) ) ab ) o«
n=0 m=0 k=0
d-1 d-t d-1
_ S1 'g\ N _ &)
=) )L apb d4mn+n-p= ) 20 (pen) (18)
n=0 m=0 n=0

where (p — n) denotes the residue of (p — n) modulo d.

The result, given by (18), shows finally that the imposition of condition (12) on the trans-
form, given by (7), is both necessary and sufficient for transform (7) to yield circular eonvolu-
tions. This generalizes a similar result, given by Agarwal and Burrus in Ref. 4, for the field
of eomplex numbers to all fields both finite and infinite. In the next section, we show how to
restrict the finite field transform, given by (17), so that it yields circular convolutions over

both the integers and complex integers.

IIIl. INTEGER ARITHMETIC PRESERVING FINITE FIELD TRANSFORMS

Suppose a is an integer of magnitude less than or equal (p — 1)/2 where p is a prime. Then

integer a satisfies
—llp-1)/2]< a < (p-1)/2

If a 20, a is the residue modulo p. If a = —b where b >0, then
azp—b Modp

Thus the set of positive integers

{-22’_1,...,—2,—1,0,1,2,...1’7’1}

eorresponds in a one -to-one manner with the following set of residues modulo p,

1 —1
{e-B),....p-2p-%01,2... 3

Since the latter set exhausts all residues modulo p, this set uniquely represents the set of all
positive and negative real integers of magnitude less than or equal to (p — 1) /2, namely, the set
{x|ix|< (p —1)/2}, x a positive or negative integer. However, the set of residues modulo p
composes precisely the Galois or finite field GI'(p), hence the above correspondence maps the
set of integers less than or equal to (p — 1)/2 onto GF(p) in a one-to-one manner.

In order to earry out arithmetic operations in GF(p) whieh arrive at the eorreet arithmetic
answer, one must often restrict the operating ranges of the integer variables even further. For
example, to compute the circular eonvolution (18) in GF(p) where a, and bn are integers, one
requires the final convolution to lie in the same "dynamie range" as the integers a, and bn'

That is, in order to avoid ambiguity



d-1

_p-1 X <P =i
7~ & Z/ aLnb(p—n)\ =7
n=0
or its cquivalent
d-1
N pE=1
Vs anb(p-n) < o i (19}
n=0
Sincc
d-1 d-1
S‘\
)2 anb(p—n) ‘3) la | lb(p—n)l
n=0 n=0

where equality holds, if a, and bn are positive integers, to satisfy (19) for all sequcnces a, and

bn such that |an| < A and lbnl < B, it is necessary that

d-1
: —
), (Max |a |) [Max [by . |]= dAB< P~ . (20)

n=0

A and B are the dynamic or operating ranges of integers, |an| and Ibnl’ rcspectively., If A = B,

then by (20) thc largest value of A is given by

Al 2= (21)

where [x] denotes greatest integer less than x, what is often called thc principlc part of x.
Assuming (21), which for many practical applications is somewhat pessimistic, one would nced

to constrain ay and bn to the interval.

_A=_I~/E§_1I\<an’bnsl'\/gl=1\ 2y

in ordcr to compute the circular convolution
d-1
c,= ¥ 2,8 (pn) (23)
n=0
unambiguously with modulo p arithmetic, i.e., keep c, in the interval

—1 -1
_p_\<c \<p_

2 n 2

To compute convolution (23) when an and bn are integers in a Galois ficld with transforms
of the type suggested by Rader [Eq. (1)], one must first represent the integers in such a field.
To preserve the arithmetic operations of addition and multiplication, thc represcntation must
necessarily be restricted to GF(p) in the manner shown above. However, GF(p) is a subfield
of GF(pn); in fact, the ground field of GF(pn) foralln (n=1,2,3,...). Thus, convolution (23)
can be performed with transforms of type (17) on a Galois field GF(pn) if ay and bn are restricted

to GF (p). In others words, if an bnEGF(p) for (n=20,1,2,...d — 1) and the transforms are

d-1 d-1
kn kn
Ak— E anoz and Bk— Z a o for(k=0,1,...d—1)
n=0 n=0



where ¢« is a generator of a d-element subgroup @4 of [GF(pn) — 0], then the d-point convolution
d-1

€= L 2Py
n=0

if integers a. and hn is found by forming

Ck:Ak.Bk for (k=0,1,...d - 1)

and then taking the inverse transform

d-1
-1 . -kn
C, = (d) ) C o
k=0

If an @ ean be found so that multiplieations by powers of @ are simple in hardware, the above
extension might be useful in increasing the number of possible points in the convolution. This
follows from the faet that d is a divisor of pn — 1 and the number of divisors of pn — 1 is always
greater than the number of divisors of p — 1.

In applications to radar and eommunications systems, one generally wants to take convolu-

’

tions of complex numbers. Towards this end seta_ =« +if_andb_=x_+ iy where o _, f#_, x
n n n n n n ne SR

and y, are integers, suitably restricted in GF(P) so that the real and imaginary parts of
d-1
C =) ab =y +1i6 (24)

p —~  “n (p-n) n n
n=0

lie in the interval —[(p — 1)/2] < Mo 6n< (p — 1)/2 for (n=0,1,...,d —-1)

anbn = %%~ Bnyn 3 1(o’nyn i Ban)

Thus one nceds four transforms, Ak’ Bk’ Xk’ and Yk of @, Bn, X and Y respectively, as

well as four inverse transforms of the produets,

Aka, BkYk’ AkYk’ Bka (25)

to find (24), the eircular convolution of complex integers. It is of interest to note that, for
certain prime numbers q, this eomputational requirement ean be reduced from four to two

Rader-type transforms.

To achieve this, prime q must be such that

X% = —1 Mod q (26)

is not solvable. But the non-solvability of (26) is the same as the statement, (—1) is a quadratie

nonresidue (Ref. 5, p. 82). This is further equivalent to

—1, _ _nila-1)/2
) =

where (a/q) is the Legendre symbol, defined by

% +1 if a is quadratie residue Mod q

—1 if a is quadratie nonresidue Mod g.

10



There are two important special cascs.
Case I.
Mersennc primcs of form Mp = 2P 1 where p is prime. FIor this case

(5,)

p

(M_-1)/2

p
-1y P 2R/

1t

p-1
o il

Thus (-1) is a quadratic nonresidue and (26} is not solvable, modulo Mp'
Case II.
>m
Fermat primes of form Fm = 2 +1 for1< m< 4. For this case

Zm-i
=) (=) = (—1)2 = +1

(_1) (. ~1)/2

Thus (—1) is a quadratic residue modulo Fm and (26) is solvable.
If (26) is not solvable, which is true when q is a Mersenne prime Mp =2P _ 1, then

polynomial

P(x) = x2 +1
is irreducible in GI'(q). By the procedure of the last section (see Example 1) a root, say i, of

2

Px)=x +1=0 (27)

can be found in the cxtension field GF(qZ). GF(qZ) is composed of the set
2 “

GF(q“) = {a +1b| a, beGF(q)} (28)
where 1 is a root of (27), satisfying

i =0 (29)

where —1 = (q — 1) Mod q.
Iividently 1 plays a similar role over the finite field GF(q) that V-1 = i plays over the ficld

of rational numbers. For example, suppose a + ib and ¢ + id are elements of GF(qZ), then by (29)
(a +ib)x(c+id)=(axec)+1 (b=d)

and

ac +1%bd + Tbe + Tad

(a +1b) (c + 1d)
= ac —bd + i(bc + ad) .

the exact analogues of what one might expect if a + ib and c + id were complex numbers. Thus
if —~1 is a quadratic nonresidue mod q, then the circular convolution (24) of the complex integers,

a, and bn' can be computed, using only two inverse transforms on the terms

Aka - BkYk’ AkYk + Bka

defined in (25).

1



In the next seetion we will show how the transforms, developed by Rader for prime fields
and extended here to Galois fields, can be extended further to rings, formed from these fields.
Before doing this, however, it is of some independent interest to demonstrate one property
of the Galois field GF(qZ) whieh the field of complex rational numbers does not have. If
% = a+ 1beGF(g%), x =£0, then

72 2
x4 -1=(a+ib)q =k
A true complex number does not have this property.

To prove this, use the binomial theorem

2 gt B 2
- -1 -1 s ks -1-k
@+imd 1= ) (q y ) (in)¥al
k=0
But
= -1.q+1 -1

ad = (aq )q and ad™" - 1 Mod q

so that

W
I

= 1 Mod q

Also the binomial coefficient is

(qz-i) _ e =4 P <2 ot =)
k AR .

_la@—1) +(q—1)] [q(g —1) + (9 —2)]...[q(q — 1) *+ (g — K)]
= T-273...K

{g—-1)(q—-2)...(q -k _ (=1) (=2)...(=k)
i -

= Z2+3...k = 1-2...k
= (~1)k Mod q
Thus
2
2 q -1
@+ipd 1o Yk fp/a)k
k=1
N 2
_ 1 —(~ib/a)?
1 +ib/a
However,
2 2
i =19 . @rhItt
1)/2 q+1 . 4 aqtt "
= R = o

2



where () is the I.egendre symbol. But by assumption (-1) is a quadratie nonresidue and

((—]) = —1. llence,

AZ ~
i -1

so that finally
2 2 a B
-1 _1+i(/a? _1+ib/a

(a + ib)3 > -
i+ib/a 1 +1ib/a

=1

We see above that the Mersenne primes Mp have an advantage over the Fermat primes Fm
in the computation of convolutions of complex integers. However, as Rader points out in Ref. 1,
this advantage must be weighed against the fact that the fast Fourier transform (FI'T) algorithm

can be applied to the transforms, using Fermat primes, but not to the Mersenne primes.

IV. TRANSFORMS IN MODULAR ARITHMETIC AND MODULO m RINGS

A transform in the ring of integers modulo m was considered by Pollard in Ref. 2. It is
well known5 that the set of integers modulo m is a ring Rm with respeet to addition and multi-
plieation modulo m.

Pollard considered first rings where m was a power of a prime p, namely, m = pn, p > 0.

He let Rm denote the set of elements of Rm prime to m, i.e.,

R¥ = {aeRm|(a, m) = 1}

where (a, m) denotes the greatest common divisor of integers a and m.
By Euler's theorem (Ref. 5, p.48), if (a, m) = 1

a(p(m) =1 Mod m (30)

where ¢(m) denotes the number of divisors of m less than or equal to m, Euler's funetion.

Thus, sinee 1 is the multiplieative identity of Rm, then

=1 (31)

for all aeR;-“-n.
The order of an element a in Rm (called the exponent of a in number theory) is the least

power e(a) such that

Also, ifm = prl the number of elements in Rm prime to m is

-1

@(m) = p" —p=p" (p—1)

n-1 n-1
(

Thus by (31) the order of eaeh element aer’;‘rl divides ¢{m) =p p—1), i.e., e(a)|p
all aeR* .
m

It is well known (Ref. 5, p. 107) that an element gER;*n ean be found such that e(g) = p (p — 1).

g is called a primitive root sinee

g(p(m) =1 Mod m

aHic]




and ¢(m) = e(g) the order or cxponent with g bclongs to modulo m. The powers of g, that is

the set

2 n-1 1
G=lg g ... &° {p-1)

are all distinct. Suppose othcrwisc that

=gl . k>
wherc
gk, gleG )
then
-1
k & -1)-1 k-1
g gP (p-1)-t _ g -1

But k —¢ < pn_1(p — 1) = e(g) which is contrary to the assumption that g is a primitive root.

Hence thc elecments of G are distinct. Since the elements of G are prime tom = prl and since

G has thc same number of clements as R:rkn’

G = R
m

Thus R;ﬁn is a cyclic multiplication group of pn_i(p — 1) clements with gencrator g.

Pollard next chooses a divisor d of p — 1 and considers an element reR;fjn of order d, i.c.,

d is the smallest integer for which rd = 1. The powcrs of r compose a subgroup Gd of RI::,

Gd= {1,r,r2,...rd_1}

He next shows that the equivalent of (16) holds when 2 is replaced by Gd' That is, if d|p -1,

d-1
1 m m, k
yo XM= ) ™F=0  form# 0 Modd
XeGy k=0
= (d) for m= 0 Mod d
= (d) 6 ,4(m)

where éd(m) is the delta function

6d(m)=0 form#OModd

=, for m = Mod d

and where (d) is d modulo p™,

To prove this, consider first the following cyclic subgroup of R;{n

n-1
P P PP

of pn_1 elements. By Fermat's theorem [Eq. (31) for m a prime], an element g

satisfies

(gp—1)k = 1* = Mod p

n=1
p
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(p-1)k of G

(32)



HHowever, if we consider an arbitrary element of subgroup,

pn—i pn-i 2 pn-i p-1
Gp_1= g ,(g ),...(g ) (34)
modulo p, then
n:i
Pk P\P \P|k p \plk_ _k
g 5|(...((g)>...) l 5|<...(g)...) | =g Mod p . (35)
Since integers p — 1 and pn-1 arc relatively prime, i.e., (p — 1, pn—i) =1, the subgroups G o

and Gp—i in (33) and (34), respeetivcly, have only the unit element, 1, in eommon, Also by (33)

and (34) every elcment of R* is to be found in the product of G and G . Hence R is
m n-1 p-1 m

p
the direct product of these two subgroups, i.e.,

R* =G X G
m P n-1
p
Thus the only elements of Rr:q whieh are not congruent to 1 modulo p are the eomplement of

G

-1

and hence in G 5
n-1 p-1

Let h be a primitive root modulo p, i.e., h is an integer 1 < h< p —1 such that p — 1 is

the least integer for which

hP~1 - 1 Mod p
Then it can be shown (see Ref.5, p.107) that a primitive root g modulo pn can always be found
of form

g=h+pp

where u is an integer. From this

gk = (h + pp)kE hk Mod p
where 1 < h< p — 1. With (35) this yields

n-1
gp R = hk Modp . (36)

Since h is a primitive root modulo p, it generates the p —1 element group <pp_1 of the non-zcro
elecments of Rp = GF(p). (36) maps the elements of Gp

onto <pp_ in one-to-one manner. Since
gpn_i(kﬂ) K+

-1 3k

= oY Mod p, this mapping is in fact an isomorphism betwcen groups Gp_1 and <pp_
i.e., Gp-i = <pp_1.
By (36) if some element of Gp

g
_q was congruent to 1 modulo p, then
n-1
& EopgFed Ml
Since h is primitive this is possible if and only if k is a multiple of p — 1. Thus none of the
elements of Gp is congruent to 1 modulo p, exeept the unit element 1. Sinee d|p - 1, Gd is a

-1

cyelic subgroup of G and likewise no element x, x % 1, of Gd is congrucnt to 1 modulo p.

p-1’
Now for m % 0 Mod d

d-1
< ) (rm)k> ™)z (Yot ()™ -4 2 0 Mod p® (37)
k=0

15



wherc r is a generator of Gd' From the above, if m E,é 0 Mod d,

r™ = 1 Mod p

Thus, the integer r'™ -1 and p are relatively prime Lo 1, p) = 1. But this in turn implies
(r™ - 1,pM =1for(m=1,2,...,d —1). Thus

d-1
Y r™% = 0 Mod p"
k=0

for all m % 0 Mod d and (32) is proved. This is essentially the result proved by Pollard in

n n
Ref. 2. Pollard states that more generally one can find a d-point transform for m = Py 1. e Py t

if d|(pi —1)forall i (i=1,...,t)and d is the order Mod m.
Bonneau in Ref. 6 has proved a converse of Pollard's result whieh we restate and prove here

in our terminology.

Theorem.

n n
If Rm has a d-point transform and m = Py 1. Py t, m odd, then dei —1 for all i and there

exists an element rcRm sueh that r is of order d in Rp n, for all i.
i

Proof.
Since Rm has a d-point transform, the delta funetion, given by (32), must exist where here
n n -
m = p,y 1. -+ Py t. I'or the inverse transform to cxist the inverse (d) L of (d), the residue of d
Mod m must exist. To find this inverse it is necessary the (d, m) = 1; d and m are relatively
prime. But this implies (d, pi) =4 forcach i (1= 15 2; «ww a't)s

Consider the mapping ¢ of ring Rm on to the direct product of rings, Rpini, sznz, ot Rptnt,

[/ Rm* H Rp.ni
1=1 1

which explicitly is

. “2 o
d(x)=(x Mod p; *, x Mod p, 7, .. . x Mod p; ) (38)

where stm. By the Chinese remainder theorem (Ref.7, pp.94-95), §(x) is a one-to-one

mapping. Since §(x +y) = ¥(x) + ¢ (y) and ¢(xy) = ¥(x) * ¥(y), ¢(x) maps ring Rm onto ring 1er n;
i
isomorphically.

The set Rl’;’l of elements relatively prime to m is an Abelian group. #(x) maps group Rm

onto the direct product of cyclic groups Rp‘ n, isomorphically. That is,
i

t
Re ~ [ Rin . (39)

The order of Rm in the isomorphism (39) is the number of elements relatively prime to m,

namely the number,

16



r
iy
e(m) = I] (pi——i) p;
i=1

whereas the number of elements in the cyclic group R; n, is
i

= Nj-1
o(p; ') = (b~ 1 p;

In order to have the delta function (32), an element reRm of order d must exist, i.e.,

B s 4

Since r . r‘d_1 = 1, the inverse of r exists and equals rd— But by an elementary theorem on

congruences such an inverse exists if and only if (r, m) = 1.
order of an element of a group divides the order of the group, d|(p(m) or

This implies reR?n. Since the

t

i=1

n.
d i (40)

But by an argument above (d, pi) =1 for all i. This with (40) yields

t

[T py_y)

i=1

d

In order to have a delta function it is necessary that sum S satisfy,

d-1
m k
Sm= E (r’) =0 Mod m
k=0
n, n,
for(m=1,2,...,d—-1). Since m = P, ! and the p; ! are all relatively prime, then
£ m,k N
Sy= L (r')F=0Modp, (41)
k=0

for(i=1,2,...t)and(m=1,2,...,d —1).
Now mapping ¢(x) in (38) sends reR;tn into the following vector
™ 2 Ly
Y(r) =(r Mod Py , r Mod P, , «..r Mod p; )

= (ri, rz,...,rt)

where r, denotes the residue of r in R* n.. Consider now the order of ry in R; ni. Let this
d! i i
order be di so that r, 1= 1, Evidently di must at least divide d so that di\< d.

Now suppose di <d. Then

d-1 o d-1 i d times -
P (ril)k : ) (r 1)k =1+1+...1=dModp, '
k=0 k=0

17



But, a prcvious argument above, (d, pi) =1fori=1,2,...t. Thus (41) for m = di satisfies

n.
. 1
sdi=dsé01v10dpi

This is a contradiction to (41). Thus the "projcetion" r, of r in R n, has order d for
i
i=1,2,...1t. But again since the ordcr of an clement divides the order of the group,

n.-1

dl(p- -1 By .

1

forall i (i=1,2,...t). Finally, since d and p; are relatively prime, all i, d|(pi 1) sfor
(i=1,2,...t). This proves the convcrse of Pollard's theorem.

The mapping §(x) given by (38) represcnts an integer modulo m as a vecctor of rcsidues of
relatively prime moduli. The arithmctic associated with this representation has come to be
known as modular arithmetie. Also thc rings associated with the mapping §(x) in (38) are called
modular arithmetie rings. Hence it is rcasonable to call transforms of type (1), which are

mapped by #(x) into a modular arithmetie ring, modular arithmetic transforms.
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